Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
JCI Insight ; 7(7)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1691177

ABSTRACT

Studying temporal gene expression shifts during disease progression provides important insights into the biological mechanisms that distinguish adaptive and maladaptive responses. Existing tools for the analysis of time course transcriptomic data are not designed to optimally identify distinct temporal patterns when analyzing dynamic differentially expressed genes (DDEGs). Moreover, there are not enough methods to assess and visualize the temporal progression of biological pathways mapped from time course transcriptomic data sets. In this study, we developed an open-source R package TrendCatcher (https://github.com/jaleesr/TrendCatcher), which applies the smoothing spline ANOVA model and break point searching strategy, to identify and visualize distinct dynamic transcriptional gene signatures and biological processes from longitudinal data sets. We used TrendCatcher to perform a systematic temporal analysis of COVID-19 peripheral blood transcriptomes, including bulk and single-cell RNA-Seq time course data. TrendCatcher uncovered the early and persistent activation of neutrophils and coagulation pathways, as well as impaired type I IFN (IFN-I) signaling in circulating cells as a hallmark of patients who progressed to severe COVID-19, whereas no such patterns were identified in individuals receiving SARS-CoV-2 vaccinations or patients with mild COVID-19. These results underscore the importance of systematic temporal analysis to identify early biomarkers and possible pathogenic therapeutic targets.


Subject(s)
COVID-19 , COVID-19/genetics , Gene Expression Profiling/methods , Humans , Neutrophil Activation , SARS-CoV-2/genetics , Transcriptome
2.
Sci Rep ; 11(1): 17365, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1379334

ABSTRACT

The SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in the non-ORF1 region of the genome containing structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/genetics , Recombination, Genetic , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Bayes Theorem , Databases, Genetic , Genome, Viral , Humans , Immune Evasion , Middle East Respiratory Syndrome Coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/classification , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/genetics , Viral Nonstructural Proteins/genetics
3.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195816

ABSTRACT

The long-lasting global COVID-19 pandemic demands timely genomic investigation of SARS-CoV-2 viruses. Here, we report a simple and efficient workflow for whole-genome sequencing utilizing one-step reverse transcription-PCR (RT-PCR) amplification on a microfluidic platform, followed by MiSeq amplicon sequencing. The method uses Fluidigm integrated fluidic circuit (IFC) and instruments to amplify 48 samples with 39 pairs of primers, including 35 custom-designed primer pairs and four additional primer pairs from the ARTIC network protocol v3. Application of this method on RNA samples from both viral isolates and clinical specimens demonstrates robustness and efficiency in obtaining the full genome sequence of SARS-CoV-2.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Microfluidics , SARS-CoV-2/genetics , Whole Genome Sequencing , COVID-19/virology , DNA Primers , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL